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Abstract

Si-based single-electron tunneling (SET) devices have of late be-

come an important alternative to the metal-based ones, both for ULSI

(ultra large scale integration) electronics and for electrical metrology.

We have very recently been designing, fabricating, and measuring SET

turnstiles, pumps, and CCD’s (charge-coupled devices) using tunable

barriers in silicon. Having shown the potential of these devices, we

wish to understand the error mechanisms which may manifest them-

selves, and to predict the level of these errors, in order to decide how
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feasible these devices will be. In this paper, we devote a substan-

tial amount of analysis to the consideration of the “dynamical” error

mechanism. This particular error considers how electrons split up as

the barrier is raised, or alternatively how the Coulomb blockade is

formed.

We then consider a wide variety of other errors, including thermal,

frequency, leakage, and heating errors. We show the dependence of

the error rate on each of those mechanisms, and predict maxima or

minima for the corresponding parameters. In the conclusion, we dis-

cuss the various advantages Si-based turnstiles or pumps would offer

with respect to the metal-based ones.
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1 Introduction and Motivation

In the past decade, single-electron tunneling (SET) devices[1] have been pro-

posed for applications in both integrated microelectronics and in electrical

metrology. In both cases, these applications often depend on the ability of

SET pumps or turnstiles to move charge in units of just one e. For instance,

for use in logic circuits,[2] the common element is a ”memory node” which

has a counted number of electrons placed onto it. In metrology, the obvious

application is as a current source, with a value of I = ef ; here, I is the cur-

rent, e is the electron’s charge, and f is the frequency with which electrons

are clocked through the device. In both of these fields of applications, it is

clear that one very important characteristic of the device is the rate of errors;

in particular, we are most interested in the probability that in each cycle, the

device passes more than or less than the exact number of electrons desired.

For example, the conventional acceptable relative bit error rate for a ULSI

chip is 10−10 during an operational period of 10 years.[3] Given a typical

conservative estimate for clock rate of 100 MHz, and the number of circuit

elements as 100,000, this yields a limitation on the bit error rate per device

of less than 10−31![3] The case where this is most limiting for SET-based

logic is for “charge bits”,[2] where one bit is represented by only a single

electron; in this case, we require a probability of error per cycle of the charge

source that is less than this number. Clearly, a theoretical investigation of

the mechanisms and values of errors will be important if SET devices are

ever to be used in ULSI microelectronics.

Applications of SET devices in electrical metrology are less exacting; the
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typical desired relative error rate is less than 10−8. Since there has already

been a substantial amount of work, both theoretical and experimental, on

errors in SET pumps used for metrology, we will devote some length in this

introduction to that field. We note in advance that most of this detailed

work has been on devices based on metal oxide tunnel junctions, and is thus

not directly applicable to Si-based devices.

1.1 Metrological Applications

By far the best reported work is the result that in SET pumps made with

Al/AlOx tunnel junctions, the error when shuttling one electron forward and

then back repeatedly can be as low as about 10−8.[4] However, because one

source of errors comes from running the pump too fast, the frequency is

limited to a few tens of MHz; this corresponds to a maximum current of a

few pA. This value of current is too small to be useful as a direct current

standard; instead, NIST has pursued a capacitance standard whose basis is

the measurement of the voltage across a capacitor when a counted number

of electrons is placed on to a capacitor plate.[5]

For a variety of reasons, it would be interesting and useful to have a

current standard with a much larger value of current but still based on the

fundamental charge of the electron. One possible approach to this is similar

to the metal pumps and turnstiles, but using Si-based materials. There are

two major potential advantages to this alternative with respect to the metal

devices: one is that the value of the capacitance in the Si devices is typically

a factor of ten or more smaller; this increases the maximum speed of the
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device by the same ratio, and thus the maximum current. The second is

that it may be possible to parallelize a large number of pumps together.

However, a major conceptual difficulty with this approach is the long-term

charge offset drift in SET devices.[6] Recently, we have shown that at least

in one class of Si-based SET devices, the long-term offset drift is at least a

factor of one thousand smaller, so that it would no longer pose a problem to

the parallelization of a large number of SET pumps.[7] Thus, the higher speed

of one Si device, and the potential of parallelization, are both motivations for

the pursuit of Si-based SET charge standards (turnstiles, pumps, or CCD’s),

in the hope of making a large-value current standard.

1.2 Devices based on Tunable Barriers

Recently, we have been experimentally pursuing a variety of Si-based SET

pumps, turnstiles, and CCD devices.[8][9][10][11] For some of these devices,

there are tunnel junctions made by fabrication, whose resistance values are

fixed; this is the typical means by which we make the pumps and turnstiles.

For the CCD-type devices, the tunnel junctions have tunable resistance val-

ues. For both classes of devices, however, the barrier between lead and islands

is always tuned by means of a gate which is used to deplete certain regions

of the silicon channel.[8][9][10] This tunable barrier is a common feature of all

the devices which we have pursued.

For the purposes of this paper, we define these terms as follows (see Fig.

1): Each of these devices has a source-drain voltage U , an island potential

Visl, and gate voltages applied to form the tunnel barriers VG. A turnstile
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is a Coulomb blockade-based device which has a non-zero U , but a time-

independent Visl; the resistances of the tunnel barriers are always well above

the resistance quantum RQ = h
e2 , and are modulated in time by varying VG.

A pump is similar, but with U = 0, and with the addition of control of

the island potential via a time-dependent Visl. A CCD is also similar to the

turnstile, except that the tunnel barriers will have resistances well below RQ

during the parts of the cycle when electrons are being transferred.

There has been previous experimental work on tunable-barrier devices,

although not in silicon. The first work[12] demonstrated current plateaus

which depended on a microwave frequency. A second publication[13] demon-

strated a device with improved fabrication, leading to an error of about 10−3.

In a similar device with an optically-driven SET pump[14], the error rate was

about 10−4.

There has also been a fair amount of previous theoretical work on tunable-

barrier devices, some of which might be relevant to our analysis. In one

paper, the oscillating barrier gives rise to photon-assisted tunneling and

sidebands.[15] However, the effect of these is suppressed in devices with a

sufficiently large Coulomb blockade energy which is generally numerically

true in our devices. Much of the theoretical work has been concerned with

blockade in mesoscopic devices, where the phase coherence of the electron

is important; this work is generally based on reference [16]. In our devices,

the phase coherence is not important, so these effects do not manifest them-

selves. Lastly, in an analysis of a device with two barriers that have sinusoidal

modulations[17], the authors showed that the phase where the electron tun-

nels is not the phase where the barrier is lowest. While interesting, this is
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not directly applicable to our devices, where the barriers are kept at a fixed

low value for a non-zero time.

1.3 Statement of the Problem

In this paper, we attempt to analyze in detail the error mechanisms and

error rates in the various phases of operation of the turnstiles and CCD’s (we

leave the consideration of pumps, which are more complicated, to subsequent

work), with a hope that that will lead us towards schemes to optimize the

performance.

In Fig. 1, we show a generic device which will form part of the concep-

tual framework for this paper. The devices are typically made using silicon-

on-insulator (SOI) wafers, and have a silicon wire running underneath the

various gates, which will both deplete to form tunnel junctions (shown) as

well as invert the silicon wire (not shown). Generally, only one of the two

(or multiple) junctions is conducting at any time; thus, we show an electrical

circuit with one tunnel junction having both capacitance and resistance, and

the other junction being only a pure capacitor. In the bottom section of

this figure, we show a generic energy diagram for the same device, with the

activation barrier Ea, bias voltage U , and voltage difference V between the

lead and the island. As described in the caption, the island potential V can

arise from either the source-drain bias voltage or from a capacitively-coupled

voltage from the upper gate, depending on the relative capacitances; usually,

the upper gate capacitance dominates. For the latter case, we can see the
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relationship between the two voltages:

V =
CUG

CΣ
UUG − eN/CΣ, (1)

where CUG is the capacitance between the upper gate and the island, CΣ is

the total island capacitance, UUG is the voltage on the upper gate, and N is

the number of extra electrons on the island.

In Fig. 2, we show the typical time dependence for one of the two gates.

During phase I, the barrier and thus the resistance of this junction is very

high; this would be either the resting phase of the device, or the phase during

which the other of the two barriers is active. During phases II, III, and IV,

this junction is active, with the amplitude of the activation barrier being

decreased substantially. For the CCD-type device, as shown in the the top

panel of part B, the resistance of the junction goes to a value small compared

to RQ. In contrast, for the pump or turnstile as shown in the bottom panel,

the resistance of the junction stays large compared to the resistance quantum

when the gate voltage or activation barrier is at a minimum. Part C shows

the time dependence of the number of charges: the number is indeterminate

in phase III, and reaches the desired number, one, in the last phase. Errors

occur when the number in the final phase is wrong, because the wrong number

became “locked in” during phase IV, as the barrier is rising.

In the remainder of this paper, we wish to analyze and calculate the

various error mechanisms and their concomitant rates. Much of this work

concentrates on the errors in phase IV, which we will call the “dynamical

error”. We analyze the dynamical error in some detail, and develop rec-

ommendations for optimizing the behavior (in particular, being able to run
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the device as fast as possible). The analysis in the other phases depends

on simpler arguments, some of which come from previous work by others.

We compile all of these errors, in order to give a list of mechanisms, error

rates, and limits on operating parameters such as frequency, voltage, and

temperature.

2 Theory of dynamical errors

In this section, we will develop the formalism necessary to analyze one spe-

cific part of the barrier height cycle. This part is the raising of the barrier,

denoted as phase IV in Fig. 2; we will call errors occurring during this part

of the cycle “dynamical errors”. Although this section is general, some of the

specific mechanisms we develop specifically for the CCD-type device, where

the resistance between the island and the outside starts off much less than

RQ.

Our general approach will be using a master equation; in the following few

subsections, we will develop the rates for various error mechanisms between

the desired state and undesired states. Following that, we will develop the

master equation approach, and examine some limiting approximations.
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2.1 Combining thermal hopping and quantum mechan-

ical tunneling

2.1.1 Thermal over-the-barrier hopping and Coulomb blockade

In phase IV, the energy barrier between the island and the lead is changing

from very small to large. Because of this, during this phase there can be

substantial motion due to thermal excitation of carriers over the barrier.

The combination of thermal over-the-barrier hopping and quantum me-

chanical tunneling, in the context of the Coulomb blockade, has not been

considered in detail to date. There has been one theoretical prediction that

a SET transistor, for a particular set of conditions, will have a current which

depends on gate voltage with thermal hopping, just as for tunneling.[18]

There has also been one experiment which seemed to confirm the theory,

although it did not obey all the conditions specified in the theory.[19]

There has been no a priori theory developed for single charge transfer

in the context of both thermal hopping and quantum mechanical tunneling.

It is clear that, as the experimental development of tunable-barrier charge

sources continues, the development of such a fundamental theory is becoming

of greater importance.

In the absence of such a theory, we wish to develop a phenomenologi-

cal approach that allows us to estimate the rate of desired and undesired

(error) charge transfers in the context of both thermal hopping and tunnel-

ing. To do so, we will first estimate the resistance of a tunnel junction due

to both hopping and tunneling, and then given this resistance as the single

time-dependent parameter, use the standard theory of Coulomb blockade to
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calculate the rate of charge transfer.

2.1.2 Resistance R versus gate voltage VG for both thermal hop-

ping and quantum mechanical tunneling

We must note that, in actuality, there is no linear resistance for thermal

hopping, where the rate of transfers depends exponentially on the height of

the barrier. This will be important in the context of SET turnstiles or CCDs,

where there is a non-zero bias voltage across the junction. However, in the

absence of a fundamental theory, we will use one simple way to estimate the

resistance of a junction for both hopping and tunneling, following a standard

linear approximation:[18]

R = G−1 =
1

Nchann

h

2e2
[
∫ +∞

−∞
dε[

−δn(ε)

δε
]T (ε)]−1. (2)

Here, ε is the energy of the incoming electron, T (ε) is the transmission

of the junction, n is the Fermi function, and Nchann ≈ wtk2
F is the number

of transverse states in the channel; w, t, kF are the width of the silicon wire,

thickness of the inversion layer, and the Fermi wavevector, respectively. The

simplest approximation we can make to obtain the transmission is to assume

a square barrier of height Ea; then, using the WKB approximation,

T = 1, ε > Ea

e−((Ea−ε)/V 0
G)1/2

, ε < Ea, (3)

where V 0
G = h̄2

2mL2 , and m, L are the carrier mass and thickness of the

barrier, respectively. Here, the first line corresponds to thermal over-the-
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barrier hopping, and the second line to tunneling. For an order of magnitude

estimate, if we assume the mass of free electrons, L = 0.1µm, we obtain

V 0
G = 40µeV ≈ 0.4 K ∗kB (V 0

G is so small because L is so long). From Eqn.

2, we get

R = 1

Nchann

h
2e2 [

∫ Ea
0 dε−dn(ε)

dε
e−((Ea−ε)/V 0

G)1/2
+

∫ +∞
Ea dε−dn(ε)

dε
]−1.

= 1

Nchann

h
2e2 [

∫ Ea
0 dε−dn(ε)

dε
e−((Ea−ε)/V 0

G)1/2 − n(∞) + n(Ea)]−1

= 1

Nchann

h
2e2 [

∫ Ea
0 dε−dn(ε)

dε
e−((Ea−ε)/V 0

G)1/2
+ 1

1+eEa/kT ]−1 (4)

This simplifies in several limits for T and Ea:

2 Ea << kT.

R =
1

Nchann

h

2e2
× eEa/kT kT << Ea << kT

kT

eVG
0 .

2e
√

(Ea/V 0
G) Ea >> kT

kT

eVG
0 . (5)

The middle line shows the temperature-dependent resistance corresponding

to thermal activation, and the bottom line shows the temperature-independent

tunneling resistance.

2.1.3 Resistance R versus gate voltage VG, Including Leakage

There is clearly an upper limit to the resistance as a function of the gate

voltage. This doesn’t affect any of the numerical results in calculating the

effects of the dynamical error; we include it to avoid the unphysical limit of an

infinite resistance. For instance, the theory predicts that if Ea is 0.1 V, R ≈
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1022 Ω. This limit is clearly the leak resistance Rleak, which is the maximum

resistance of an electrostatically-produced tunnel junction; in reference [20],

the leakage resistance was estimated to be 1020 Ω, from measuring a leakage

time of greater than 10 000 s. Thus, we obtain the gate voltage-dependent

resistance of

R(VG) =
RRleak

R + Rleak
, (6)

where R is the value from Eqn. 4.

Now, having calculated R(VG), we can use this single time-dependent

parameter to calculate the rates of motion.

2.2 Calculation of Rates of Motion

We wish to consider the error mechanism in phase IV that comes from number

fluctuations on the island. In phase III and the beginning of phase IV, as seen

in Fig. 2B, it is clear that because R is much less than RQ, the number of

carriers on the island is not a good quantum number. This means that there

will be an extra error mechanism which comes from the increased probability

that these number fluctuations will cause an unwanted result: the number

of electrons on the island will end up (after the barrier is raised) at a value

other than the desired one.

In order to evaluate this increased probability, we need to obtain two

results: first, we need to calculate the rates to change the number of electrons

on the island by one, as a function of the time (or equivalently, of the barrier

height). For example, Γ01 is the rate for a change from zero electrons to one.

We desire a calculation of the rates over a range of resistances R from much
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less than RQ to much greater than RQ. Secondly, we will use these time-

dependent rates in a master equation to calculate the probabilities of ending

up with zero, one, ... electrons on the island; the sum of the probabilities of

other than one electron will be the error.

2.2.1 Rates of Motion for Small and Large Barriers

Unfortunately, there is no simple calculation that contains the rates of motion

over the range from much less than RQ to much greater than RQ. There

have been non-perturbative calculations over the entire range, but these only

compute the renormalized Coulomb blockade energy,[21][22] not the rate of

motion.

Thus, we wish to obtain an approximate relation for this rate which agrees

in the limits of small and large resistance with the results of previous per-

turbative calculations. It is clear that the treatment given in this section is

phenomenological; a more fundamental, a priori approach would be desired

in the future. Two results which help us are as follows:

weak tunneling (R >> RQ) The “orthodox” equation for the tunneling

rate is[1]

Γ =
1

e2R

∆E

1 − e−β∆E
. (7)

Here, we explicitly include the Coulomb blockade by using the expres-

sion for the energy change which includes this contribution[23]:

∆E± =
e

CΣ

(−e/2 ∓ Ne ± C2U), (8)
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where CΣ = C1 + C2, and where we have neglected stray background

charge; also, the ± refers to the addition or subtraction of one electron

from the island. Because of the form of the equation, the rate is expo-

nentially suppressed for motion in the “wrong” direction (i.e., towards

a higher energy state). Also, in the context of pumping electrons, it

is clear that U will be set at a particular value. We will define the

desired state as having one excess electron (N = 1), so that often we

will want U = e/C2; this makes ∆E± most negative, and thus makes

motion out of the desired state unlikely. More generally, we will restrict

|U − e/C2| < e/2C2.

strong tunneling (R << RQ) We are interested in the fluctuations in the

charge due to the fact that N is no longer a good quantum number. We

argue on physical grounds that, in this limit the leading term for the

rate of motion in and out should simply be 1/RC; here, we are explicitly

assuming that at any instant in time, the number of electrons on the

island can change randomly, and that the time required to do this is

simply the relaxation time RC. Thus, we conclude that in this limit

the rate can be written as

Γ =
1

RC
. (9)

We wish to obtain a function which smoothly approximates the rates in

both limits of R. Using a simple exponential smoothing function with a

crossover at RQ,[24] we obtain a rate for the number fluctuations which
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is

Γ =
1

e2R

∆E

1 − e−β∆E

1 − e−R/RQ

1 + e−R/RQ
+

1

RC

2e−R/RQ

1 + e−R/RQ
. (10)

2.2.2 energy barrier Ea versus gate voltage VG

We wish to obtain the energy barriers Ea and E ′
a as portrayed in Fig. 1C.

The parameter which is controlled in the experiment is VG, and this is the

quantity we wish to use to parameterize the equations. In order to do so, we

need to obtain the energy barrier Ea in terms of VG.

We use standard results from the silicon microelectronics field for this

purpose. In particular, it is well known that in Si/Si02 MOS capacitors,

the surface potential ψS closely follows the gate voltage VG;[25] in fact, for a

wide range of gate voltages in the direction of accumulation (larger tunneling

barrier), the surface potential is approximately equal to the gate voltage for

voltages small compared to the band gap (1.1 eV). Thus, we will make the

simplifying approximation that Ea = |eVG| and E ′
a = |eVG| + eV , where we

have assumed that the gate voltage is measured with respect to the flatband

voltage in the left lead.

2.2.3 Total Rate of Motion Γ

Finally, having developed all of the above formalism and approximations, we

can now derive the rate of motion, as a function of the gate voltage or barrier

resistance. We combine Eqn. 4, Eqn. 10, and Eqn. 6 to obtain (for motion

on to the island):

Γ(VG) =
1

e2R(VG)

∆E+

1 − e−β∆E+

1 − e−R(VG)/RQ

1 + e−R(VG)/RQ
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+
1

R(VG)CΣ

2e−R(VG)/RQ

1 + e−R(VG)/RQ
, (11)

where R(VG) is given by Eqn. 4 and 6, and ∆E by Eqn. 8. For purposes of

discussion, we label the two terms in this equation as Γ3, and Γ4. For motion

off the island, we would replace ∆E+ by ∆E−.

The formalism developed above is clearly not an a priori theory, and de-

velopment of such a fundamental theory would clearly be desirable. However,

we believe that this relationship for the dynamical error rate captures the

essential physics necessary to analyze this error mechanism.

2.2.4 Barriers for Specific Situations

We need to examine the activation barrier and energy change upon motion

onto and off of the island. In Fig. 3, we show the potential energy diagrams

for UUG = e/CUG; here, we have now specifically considered the gate (denoted

“UG”, or upper gate) voltage and capacitance, because this capacitance is

ususally much bigger than the capacitance to the drain. This choice of the

upper gate voltage makes the N = 1 state optimally preferred, which one

can see by substituting in Eqn. 8. Here, we have used the result that

V =
CUG

CΣ

UUG − eN/CΣ = e/CΣ − eN/CΣ = (1 − N)e/CΣ. (12)

We note that in this Figure and in Table 1, we have assumed that: 1) the

barrier does not change as the electron moves; 2) for N = 1, the appropriate

energy barrier to use is with V as in Eqn. 12. This latter assumption means

that we are suppressing consideration of dynamic effects such as the image

charge[26][27] on the barrier.
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We note one interesting thing from this figure: when the barrier is smaller

than the Coulomb blockade energy, |eVG| < e2/CΣ, there is no stable state

for N = 2 or higher. This is because the potential of the island rises above

the top of the activation barrier in this case. It is not clear exactly what

this means in reality; for instance, does the potential of the island truly rise

by the Coulomb blockade energy when it is higher than the barrier? This

is an interesting regime which, to our knowledge, has not been investigated

either experimentally or theoretically. For the purposes of this paper, we will

simply assume that the barrier is as drawn.

Table 1 shows the corresponding activation barrier and energy Ea and

∆E±, for motion between the three states we will consider (N = 0, 1, or 2).

We show in Fig. 4 and 5 some simple examples of the rates defined in

Eqn. 11. These graphs show the resistance and the rates as a function of gate

voltage when the potential U is set such that CUGUUG/e = 1; as mentioned

above, this is the condition in which it is optimally favorable for one electron

to tunnel onto the island due to the Coulomb blockade.

In these graphs, we have chosen the temperature so that the exponential

factor in Eqn. 7 is small enough that the error rate Γ10
3 is small compared

to the desired rate Γ01
3 . This is one example of a general feature: what we

desire is that the forward rate, Γ01
tot, is large compared to the backward or

error rate, Γ10
tot.

We are interested in the probability that the number of electrons on the

island at the end of phase IV is not the correct number; what we ultimately

desire is that this probability is less than some relative error rate ε0. One

way of quantifying this is to note that a minimal condition for achieving a

18



relative error rate no larger than ε0 is that the rates for the undesired motion

be at most ε0 times the rates for the desired motion. If we set ε0 = 10−8,

we can see that we need −∆E− > 20kT , or e2/CΣ > 40kT . Note that this

condition may change somewhat if we operate at a voltage other than the

optimum, U = e/C2.

We note that the important region of change of the gate voltage is at low

voltages, where the resistance is not much greater than RQ. In particular,

our estimate for the rate of number fluctuations for a low barrier, Γ4, falls

to an acceptably low value in this particular simulation at about 0.0025 V.

Although the exact details of how the error rate Γ4 depends on VG are not

known, it is clear that it will fall with some dependence as R increases.

2.3 Master Equation

It is very clear from the foregoing that the rates, both desired and undesired,

depend quite sensitively on the details of the device parameters. In addition,

in general it may be difficult to discriminate via device geometry between

tunneling and thermal over-the-barrier hopping. Thus, it is not possible in

this work to directly calculate the dynamical error exactly from the device

geometry. Instead, what we hope to do is to give insight into the general

trends as well as develop the formalism, allowing calculation of optimum

strategies for particular devices in the future.
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2.3.1 General Considerations

The situation we encounter is as follows: at the beginning of phase IV,

the probability of finding an undesired number of electrons on the island is

relatively large, either because (for the CCD-type device) the rates of forward

and backward motion are the same when R < RQ, or (for the turnstile)

because we are starting with a state that has N = 0. As time progresses

through phase IV, because the bias voltage is set to favor the state with N =

1, the probability of finding one electron on the island increases towards one,

and the probabilities of finding a number other than one decrease towards

zero, in an approximately exponential fashion. In the rest of this subsection,

we will specialize to the case of the CCD; the other case is similar.

The first question we must ask is: how many different states should we

consider? Again this is a detailed question which in general must be an-

swered for each specific device. However, it seems reasonable for our general

discussion to only consider three states, those with N = 0, 1, 2. We will call

the probabilities of finding that number of electrons on the island at any

time as P0(t), P1(t), P2(t). The next question we must consider is: what are

the values of these probabilities at the beginning of phase IV, time t = 0?

This is also a detailed question which must be answered for each specific

device; thus, we make the simplest possible approximation, which is that

P0(0) = P1(0) = P2(0) = 1/3. Finally, in the standard way for a master

equation, we obtain the rate of change of these probabilities as:

dP0(t)

dt
= −Γ01

totP0(t) + Γ10
totP1(t)
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dP1(t)

dt
= −(Γ10

tot + Γ12
tot)P1(t) + Γ01

totP0(t) + Γ21
totP2(t)

dP2(t)

dt
= −Γ21

totP2(t) + Γ12
totP1(t) (13)

2.3.2 Frequency Limit - Linear Voltage Ramp

In Fig. 6, we show the results of the master equation for the same parameters

as in Fig. 4. Here, we assume that the gate voltage on the barrier is raised

linearly in time, from 0 to 0.2 V, over two possible ramp times tramp as

indicated. These ramp times are chosen because they are in the relevant

range for our devices, and also because they show the basics of the dynamical

error for the parameters we have used.

In order to get this, we need to obtain the rate Γ21; since there is no

barrier for motion in this direction, we can use a standard result from the

transit time in CCD’s[25], which yields Γ21 = 1/τ = µV/L2 ≈ 10−12 s−1.

We note that the probability for an error which leaves zero electrons on

the island after the gate is raised saturates at an undesired large value for

the shorter ramp time. This is an example of the ”locking in” of the wrong

number of electrons on the island. The lower panel of Fig. 6 gives us insight

into why this occurs. We consider the first line of Eqn. 13, over the relevant

voltage range from 0.001 to 0.003 V. In this range, the value of the probability

for the desired outcome, P0, is close to 1, so that we can write:

dP0(t)

dt
= −Γ01P0(t) + Γ10; (14)

here, we have suppressed the subscript ”tot”. In the region of interest, what

is occurring is that Γ10 is rapidly decreasing, as the resistance rises above RQ,
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and thus the Coulomb blockade turns on. In turn, P0 is attempting to follow

the rapid decrease of Γ10. We can see from Eqn. 14 how this occurs: as Γ10

decreases, the first term on the right hand side drives P0 down by providing

a negative sum to the time derivative of P0. However, if Γ01 decreases too

quickly, because the gate voltage has been ramped too quickly, the first term

cannot drive down the probability quickly enough, and so it gets locked in

to a relatively large value. Thus, this equation tries to provide negative

feedback, and in particular tries to maintain the sum on the right hand side

at a small value. We note this is equivalent to satisfying detailed balance:

P0/P1 = Γ10/Γ01. (15)

We can see the feedback in the lower panel of Fig. 6: for the one case (P0 for

10 ns) where the probability of an error saturates at a relatively large value,

the ratio plotted shows that this feedback fails to occur.

Given the guidance from this analysis, we can also estimate in a straight-

forward way what the limit on the ramp time or frequency of operation will

be in general. In the gate voltage region of interest, this failure occurs when

Γ01P0 >> Γ10. Thus, we can approximate

dP0(t)

dt
= −Γ01(t)P0(t), (16)

or

ln P0(t) = −
∫ tramp

0
dt Γ01(t). (17)

From the first term of Eqn. 11, we can see that the time dependence of Γ01(t)

comes from the gate voltage dependence of the resistance R, predominately
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as 1/R(VG); also, in the gate voltage region of interest, an approximation for

R comes from the middle line of Eqn. 5. Thus, we can write

Γ01(t) ∝ 1/R = Γ0e
−|eVG|/kT , (18)

and

ln P0(t) = −
∫ tramp

0
dt Γ01(t)

= −tramp/|VG ramp|
∫ |VGramp|

0
dVG Γ01(VG)

= −tramp/|VG ramp| Γ0

∫ |VGramp|

0
e−|eVG|/kT

= −kT/e tramp/|VG ramp| Γ01(R = RQ), (19)

where we have defined the start of the integral at the point where the resis-

tance goes above RQ, and VG ramp is the value of VG(tramp), when the ramp

is finished.

Over this region, we want the probability of having zero electrons to be

less than the acceptable error rate ε0: ln P0 < ln ε0, or

tramp >
VG rampe| ln ε0|
kTΓ01(RQ)

. (20)

As a numerical example, if we consider the rates in Fig. 4, with ε0 = 10−8,

we can see that at R ≈ RQ, the desired rate Γ01 is about 1× 1012 s−1. With

T = 4 K, we thus obtain the result that the minimum ramp time or time for

this phase T IV is 6 ns, for a linear ramp from 0 to 0.2 V. This is equivalent

to a maximum frequency of 160 MHz (just for this phase).
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2.3.3 Frequency Limit - Optimized Ramp

Clearly, a simple linear ramp over the whole of phase IV is not an optimum

shape for the ramp of the gate voltage. It is clear that, as discussed above,

a detailed optimization of the rate needs detailed knowledge of the device

parameters. However, we again wish to give some general guidance as to

how to optimize the ramp.

For instance, one obvious strategy is to ramp quickly for R < R∗, then

stop for a certain time, then ramp as fast as possible above this. Here,

R∗ is the value of R(t) where the Coulomb blockade is fully active (the

corresponding VG
∗ is approximately 0.0025 V in Figs. 4 and Figs. 6). In

this case, when VG is stopped at VG
∗, from Eqn. 16 with Γ01(t) a constant,

P0 ∝ e−Γ01t will fall to an acceptable value in a time of t∗ ≈ ln ε0 Γ01(R∗).

To get an approximate answer, we can assume that the Coulomb blockade

is fully developed by the time R = 10RQ. In this case, from Eqn. 10, we can

estimate that this waiting time is t∗ ≈ | ln ε0|R∗CΣ ≈ 10| ln ε0|RQCΣ. As an

example, we show three possible optimized ramps in Fig. 7. The red curve

shows the optimum waiting voltage VG
∗ = 0.0025 V, and demonstrates that

only a very short waiting time is required to equilibrate. The black and blue

curves show the deleterious effect of stopping too soon or too late, even with

a much longer t∗.

Thus, to optimize the gate voltage ramp, we can:

1. Estimate junction and gate capacitances from the SETT behavior.

2. With one barrier low, measure the conductance of the other barrier as

a function of gate voltage.
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3. Estimate the optimum bias voltage U , and VG
∗; during the ramp, stop

at VG = VG
∗ for a time of t∗ ≈ 10| ln ε0|RQCΣ.

2.4 Summary of Dynamical Error Considerations

2.4.1 Generality of Results

The tunneling and activation rates depend very sensitively on the device

parameters. Thus, we suspect that it will not be possible in practice to

simulate the rates and thus optimize device operation from considerations of

the device geometry alone. Rather, we believe that empirical measurements

of the electrical characteristics of one barrier must be made before any such

attempts to optimize.

In contrast, the general results that we have obtained, for frequency limits,

and for the optimization procedure, depend on only two quite reasonable

assumptions:

1. The Coulomb blockade turns on rapidly, as a function of t, R, orVG,

after R > RQ.

2. The Coulomb blockade depends only on the barrier resistance, inde-

pendent of whether the motion is tunneling through or activation over

the barrier.

Temperature Limit Just as in any other SET device, the thermal energy

must be low enough to allow operation of this device. In particular, a

crude rule of thumb is that we require kT < (1/40)e2/CΣ, to achieve a

relative error less than ε0 ≈ 10−8.
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Frequency Limit Because of the possibility of “locking in” the undesired

state, the gate voltage cannot be ramped at an arbitrarily fast rate.

Rather, we are limited to minimum ramp times as follows:

T IV >
VG rampe| ln ε0|

kTΓ01(RQ)
[non-optimized (easy)]

T IV > 10| ln ε0|RQCΣ [optimized (not easy)] (21)

3 Theory of Other Mechanisms

3.1 Leakage through Other Barrier

3.1.1 Rates

In the previous section, we considered the situation where the gate voltage

and the resistance of one barrier was varied, while the resistance of the other

barrier was considered to be infinite. We now consider the “leakage” error

due to the finite resistance of the second barrier, Rleak. The mechanism and

the magnitude of the error will depend on whether Rleak is larger or smaller

than RQ, and on the phase of the cycle.

We will consider both the tunneling through the single junction formed

by the second barrier, as well as the cotunneling through both barriers. As

in the previous section, for single junction tunneling, we have:

Γ = 1
e2R

∆E
1−e−β∆E R > RQ.

V
eR

R < RQ. (22)
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We will consider in this discussion of leakage only events that are energet-

ically favorable in the Coulomb blockade regime, because the energy change

obeys |∆E| ≈ EC >> kT . Thus, we have for two successive single-junction

events causing a net error,

Γleak = |∆E|
e2RΣ

R > RQ.

VSD

eRΣ
R < RQ. (23)

Here, RΣ = R(t) + Rleak is the total resistance of both junctions.

By definition, cotunneling can only occur when both barriers are large

compared to RQ. In this case, the rate is[28]:

Γcot =
1

6π2h

RQ
2

RRleak

1

E2
C

[(eVSD)2 + (2πkT )2](eVSD)
1

1 − e−βeVSD
, (24)

with R the resistance of the active barrier, and other symbols as defined

previously. We note that this result is numerically only valid for small bias; its

usage here is only to obtain an approximate error rate. Since for the turnstile

or CCD, the voltage bias across the device is about VSD ≈ EC >> kT , the

last fraction is approximately one, so

Γcot =
1

6π2h

RQ
2

RRleak

(eVSD)3

E2
C

. (25)

Phase I In this phase, both barriers have resistances equal to Rleak, so RΣ =

2Rleak. In this case, there are two possible modes for errors, given the

voltage bias across the device:

27



1. The electron tunnels from the left onto the island, and then tun-

nels to the right (favorable).

2. the electron tunnels from the island to the right lead, and then an

electron tunnels from the left lead to the island (unfavorable).

Suppressing the unfavorable case for Γleak, the probability that the elec-

tron (after making the first tunneling event) does not return through

the same junction, and therefore produces a net error, is approximately

equal to one. To simplify consideration, we will assume that the volt-

age drop across both junctions for N = 0 is the same (as we did in

the previous section). The more general case has a straightforward al-

though more complicated analysis. With a total voltage drop of VSD

split equally among the two barriers,

ΓI
leak = |EC/m|

2e2Rleak

ΓI
cot = 1

6π2h

RQ
2

Rleak
2

(eVSD)3

E2
C

, (26)

where 1/2 < m < 1, depending on bias.

Phases II and IV In these phases, the active (left) barrier has a resistance

much less than Rleak, and which may be less than RQ (for the CCD),

so RΣ = Rleak. For R << RQ, there is no Coulomb blockade, and so

there is no cotunneling; instead, there is a large single-junction rate for

tunneling through the inactive barrier. In this case, error rates are:
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ΓII
leak = |EC/m|

e2Rleak
, R(t) > RQ

VSD

eRleak
R(t) < RQ

ΓII
cot = 1

6π2h

RQ
2

R(t)Rleak

(eVSD)3

E2
C

R(t) > RQ (27)

Phase III This phase is similar to phases II and IV for the single-junction

tunneling rate Γleak, except that the active barrier resistance R(t) is

a constant, Rlow; again, RΣ = Rleak. There is no cotunneling for the

CCD, since there is only one tunnel junction. With Rlow the value of

the active barrier for the turnstile in this phase,

ΓIII
leak = |EC/m|

e2Rleak
[turnstile]

ΓIII
leak = VSD

eRleak
[CCD]

ΓIII
cot = 1

6π2h

RQ
2

RlowRleak

(eVSD)3

E2
C

[turnstile], (28)

3.1.2 Estimates of Errors

Since these errors are all independent of past history (in contrast to the

dynamical errors), we do not need to consider a master equation, and thus

the total error is simply:

εi =
∫ i

dtΓi, (29)

where i represents the time spent in each of the four phases.
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Thus, we have the total relative error in one cycle of the turnstile or CCD

as:

εleak = |EC/m|
e2Rleak

{T I/2 + T II + T III + T IV } [turnstile]

εleak = |EC/m|
e2Rleak

{T I/2 + T II;R>RQ + T IV ;R>RQ}

+ VSD

eRleak
[T II;R<RQ + T III + T IV ;R<RQ ] [CCD]

εcot = 1
6π2h

RQ
2

Rleak

(eVSD)3

E2
C

[ T I

Rleak
+ T III

Rlow
+

∫
II dt 1

R(t)
+

∫
IV dt 1

R(t)
] [turnstile]

εcot = 1
6π2h

RQ
2

Rleak

(eVSD)3

E2
C

[ T I

Rleak
+

∫
II;R>RQ

dt 1
R(t)

+
∫
IV ;R>RQ

dt 1
R(t)

] [CCD](30)

Here, we have defined T I , T II , T III , T IV as the time spent in phases I,

II, III, and IV; we also define T tot = T I/2 + T II + T III + T IV . We can

make some immediate simplifications: Because Rleak is so large, the term for

phase I in the cotunneling error is so small that we can neglect it (here, we

assume that the time spent in phase I, T I , is not much much longer than the

time in the other phases). Also, there is less than a factor of two difference

between |EC/m|/e and VSD, so we set them equal. In that case, by noting

that RQ = h/e2, we obtain:

εleak = |VSD|
eRleak

T tot [turnstile]

εleak = VSD

e2Rleak
T tot [CCD]

εcot = 1
6π2

VSD

eRleak
[T III RQ

Rlow
+

∫
II dt

RQ
R(t)

+
∫
IV dt

RQ
R(t)

] [turnstile]

εcot = 1
6π2

VSD

eRleak
[
∫
II;R>RQ

dt
RQ
R(t)

+
∫
IV ;R>RQ

dt
RQ
R(t)

] [CCD] (31)

We note that, for the turnstile, R(t) ≥ RQ, and for the CCD, R(t) ≥
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RQ/20; because of this, in both cases, the extra prefactor of 1
6π2 means that

the cotunneling error is smaller, so that the leakage error dominates. Thus,

we obtain, noting that it is also approximately true that |EC/m|/e ≈ VSD ≈

e/CUG ≈ e/CΣ, that both devices have the same final estimate:

εleakage = 1

CΣRleak
T tot [turnstile]

1

CΣRleak
T tot [CCD] (32)

We note that these final results are appealing in their simplicity: the

error is essentially a fraction of the cycle time divided by the RC time for

the device.

We note that the errors in Eqn. 32 can be considered as limits on fre-

quency, but also as limits on temperature, because Rleak may be thermally

activated. However, this limit is easily neglected, because it is likely that we

can always increase the terminal value of VG and thus increase the activation

barrier, and so increase the value of Rleak at any given temperature.

3.2 Frequency Errors

This error results from not waiting long enough for electrons to tunnel, very

similar to the metal pumps.[29] Since we separately considered the master

equation in phase IV, it is not necessary to separately consider frequency

errors in this phase. Also, such errors are unimportant in phases I and II. In

phase III, the frequency error in the CCD device is negligibly small, because

the resistance is so low. Finally, we can estimate the error in the turnstile in

phase III as:
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εfreq = e−T III/RlowCΣ. (33)

3.3 Heating Errors

This error is more complicated to calculate, because it requires knowledge of

the cooling mechanism of the electrons in the device; these mechanisms are

not well known at low temperatures.

In general, the low-temperature electron-phonon cooling power has been

better studied in metals than in semiconductors. To get an estimate of the

effect we follow the general procedure in Niu et. al.[30], which we outline

in the following: for a cycle frequency f = 1/Tcycle, the power input to the

central island is approximately Pin = fEC = fe2/2CΣ. In general, the cool-

ing power due to the electron-phonon coupling is B(T 5
e − T 5

L), where Te and

TL are the electron and lattice temperatures, respectively; B is a constant.

For the two-dimensional electron gas in a GaAs/AlGaAs heterostrucutre, the

cooling power is estimated as σA(T 5
e − T 5

L), where A is the area, and σ = 30

fW/K5/µm2. Since the temperature rise depends only weakly on the empir-

ical parameter σ as Te ∝ σ1/5, we believe it is reasonable to use this result

for a Si quantum dot.

Setting the incoming power equal to the cooling power, we can obtain the

rise in the electron temperature over the lattice temperature. Using an area

of (0.08µm)2, and with a total capacitance of 10 aF, we obtain Te = 0.09f 1/5,

with Te in units of K, and f in Hz. Using the criterion developed earlier for

the maximum temperature to avoid thermal errors, kT < 1
20

EC , we obtain

32



an estimate of the maximum frequency as fmax = 200 MHz.

We may also ask the question: what is the effect on the error rate for

frequencies higher than this? As we saw above, the relative error grows with

temperature as εtherm ∝ e−EC/kT . Thus, if we use a frequency higher than

the maximum, we get a relative error which is approximately

εheat = e−20(fmax/f)1/5

. (34)

4 Conclusions

We refer to Table 2, which summarizes most of the results in this paper. In

this Table, we list the various parameters which are important to reach a

desired low relative error ε0. For each parameter, we show the effect on the

error ε, as well as the formula for the limit of the parameter, plus numerical

values for two possible desired relative error levels.

We note that in general, the limits on the parameters are all reasonable;

we must of course acknowledge, as described in the foregoing, that the rates

for the dynamical error depend very sensitively on the device parameters,

and so the values shown for that error mechanism are only approximate

estimates. The limit which appears to be most problematic is the minimum

time spent in some phase IV, for the non-optimized case. This does not

concern us overmuch, for two reasons: one is that this limit can probably

be moderately reduced by reducing the temperature, and the second is that

it may be possible to substantially reduce it by the optimization procedure

outlined above.
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Much of this paper has been devoted to trying to understand and calcu-

late the “dynamical” error mechanism. This mechanism is intimately bound

up with the interesting question of how the Coulomb blockade is formed,

and in particular how electrons split themselves up as a barrier is formed.

We have opted to take the simplest phenomenological approach to trying

to understand this question; we believe there may be substantial interest-

ing experiments to be done in this realm, and we invite more fundamental

theoretical considerations for this dynamical error.

Another interesting question which is raised herein is that of the inter-

play between thermal over-the-barrier hopping and Coulomb blockade. As

mentioned above, there is one theoretical treatment of this, for the SET

transistor.[18] However, we know of no such treatment for the control of

single-electron motion, and we believe there is room for fruitful analysis in

this regime of low, thick tunnel barriers.

Finally, having listed the formulas for and values of the various error

mechanisms, we can generally comment on the feasibility of Si-based elec-

tron current standards. It is evident from Table 2 that the putative error

mechanisms can in general be controlled at an acceptable level for electri-

cal metrology. Given that, there are substantial advantages to the Si-based

devices compared to the metal-based ones that make it desirable to pursue

this alternative route towards a high-value current standard. These advan-

tages include the tunable junction resistance, which allows us to avoid the

cotunneling error which forces the choice of using many (seven, e.g.) tunnel

junctions in the metal pumps.[29][31] [4][32]

Also, the Si-based devices inherently have a capacitance which is smaller
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by about an order of magnitude, allowing them to run significantly faster

compared to the frequency error. In addition, this smaller capacitance affords

the capability of running the devices at a much higher temperature (in the

metal devices, the maximum temperature is about 0.1 K[4]). Finally, the

lack of the charge offset drift in at least one class of Si-based SET devices[7]

affords the potential of parallelizing a large number of turnstiles or CCD’s

to achieve a very large current.

It is a pleasure to thank Leonid Glazman (U. Minnesota) for enlight-

ening discussions regarding the interplay of thermally activated motion and

Coulomb blockade, Mark Stiles (NIST Gaithersburg) for valuable discussions

regarding many of the issues considered in the section on dynamical errors,

Eric Vogel (NIST Gaithersburg) for discussions regarding Si device physics,

Mark Keller (NIST Boulder) for a critical insight into the analysis of the fre-

quency limit from the dynamical error mechanism, and Mike Kelley (NIST

Gaithersburg) for useful comments on the exposition.
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List of Tables

1. Table I: List of activation barriers Ea and energy changes ∆E for var-

ious conditions. In blue are shown the energies to move toward the

desired state, and in red the energies to move away from the desired

state. The upper set of figures are for small gate voltages, and the

lower set for large gate voltages. As shown in the figures and discussed

in the text, it is sufficient to consider only the smaller range.

2. Table II: List of error mechanisms, concomitant limits on parameters,

and leading corrections to relative error rates for parameters outside of

desired ranges.
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Mechanism Eq. Parameter Error ε Limit Limit (ε0 = 10-8) Limit (ε0 = 10-7)

Dynamical 20 time T IV
min  ε0  exp[T IV /T IV

min] eV G ramp |ln ε0| > 6 ns > 5 ns

(non-optimized) kT  Γ01(R Q)

(optimized) 100 R Q C Σ > 25 ps > 22 ps

Thermal  temperature T max  ε0  exp[T /T max] e2
< 4.4 K < 5.0 K

2 |ln ε0| CΣ

Leakage 32 maximum times (C Σ R leak)
-1 [T I/2 + T II + TIII + TIV] ε0 C Σ R leak < 10 µs < 100 µs

Frequency 33 T III
min exp[-T III /C Σ R low] |ln ε0|C Σ R low > 0.1 ps > 0.1 ps

Heating 34 frequency f max  ε0  exp[(f max /f )1/5 ]    ε0
-1 Aσ            e2          4 < 200 MHz < 400 MHz

           kB          CΣ kB 



List of Figures

1. A: Physical sketch of gates and wire for turnstile, or CCD-type device.

The upper gate is not shown, for clarity. B: Simple circuit with one

tunnel junction and one blocking capacitor. C: Energy diagram for the

upper part of the circuit in B, showing the potential of the island, and

the activation barrier Ea. For many devices, the capacitive coupling

of the upper gate to the island is much larger than from the source or

drain, so that V is defined by the voltage of the upper gate.

2. Illustration of the time dependence of various quantities, as the barrier

for the first gate is lowered and then raised. Note that one complete

cycle of the full device would include a similar set of steps for the

second barrier. (a) sketch of the gate voltage applied to the barrier

region versus time. Note that, for a device that has electron transport,

a more negative gate voltage impedes such transport, and ultimately

forms a tunnel barrier. (b) Top: Time dependence of the resistance of

the tunnel junction versus time for the CCD-type device; note that the

value goes well below RQ when the gate voltage is low. Bottom: Time

dependence of the resistance of the tunnel junction versus time for the

pump or turnstile; note that the value always stays well above RQ. (c)

Configuration of barriers, and charges on island, as a function of time.

In phase III, with the barrier low, the number of charges on the island

is indeterminate. In IV, as the barrier is rising, the number of charges

is moving towards the energetically favored number of one. In I again,

the number of charges is the desired number; errors occur if a number
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other than this is “locked in” because the barrier is raised too quickly.

3. Potential energy diagrams for the left lead, island, and right lead, for

three cases. Top: e2/CΣ > |eVG|; Middle: e2/CΣ = |eVG|; Bottom:

e2/CΣ < |eVG|. We have assumed CΣ ≈ C2 ≈ CUG. In each case, three

potentials are shown, corresponding to 0, 1, or 2 extra electrons on the

island. See Table 1 for the corresponding activation barriers and energy

changes. This figure shows the results for U = e/C2 or UUG = e/CUG,

which makes the energy changes ∆E± optimum for Coulomb blockade

to favor the N = 1 state.

4. Upper: the tunneling resistance versus the gate voltage, for the param-

eters shown. The length of the forbidden region underneath the gate

is L is 0.03 µm, which determines the dependence of the resistance

on gate voltage. For comparison to the approximations in Eqn 5, we

note that kBT = 4 × 10−4 eV and kBT kBT
eV 0

G
= 4 × 10−3 eV; thus, the

resistance is dominated by thermally activated motion for smaller VG.

Lower: Rates of motion versus gate voltage for the same range as in the

upper curve. Γ4 (second term in Eqn. 11) is large at low gate voltages,

when R < RQ; at large gate voltages, Γ3 (first term in Eqn. 11) is

larger. The energy change for the motion onto the island (rates Γ01)

∆E+ is positive, corresponding to a desired tunneling event towards the

desired state; conversely, the energy change for rates Γ10 is negative,

inhibiting motion away from the desired state. Since ∆E+ is positive

and ∆E− negative, Γ01
3 is much larger than both Γ10

3 and the thermal

rate Γotb; the same is true of Γ01
tot versus Γ10

tot. Note that e2/CΣ|2 −
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C2U/e| = 0.016 eV, and thus all of the important rate changes (all

of the action in this graph) occur for |eVG| < e2/CΣ|2 − C2U/e|, or

|eVG| < e2/CΣ (i.e., the energy barriers are as indicated in the top

panel of Fig. 3 over this whole range).

Parameters: T = 4 K, U = 0.032 V, CΣ = 10 aF, Nchann = 10, VG
0 =

0.000046 eV, ∆E01 = 0.008 eV, ∆E10 = −0.008 eV, V = 0.016 eV,

e2/CΣ|2 − C2U/e| = 0.016 eV.

5. Similar to the previous graph, but over a larger gate voltage range.

Note that the rates Γ01
3 and Γ01

tot are substantially larger than those of

the reverse direction. Above about 0.06 V, the resistance saturates at

Rleak, and the rates saturate also.

Parameters: same as the previous Fig.

6. Probabilities as a function of time, or gate voltage, for a linear gate

voltage ramp. The same parameters are used as in Fig. 4. The ramp

is from 0 to -0.2 V, over a time of either 10 or 100 ns.

Upper: Probabilities P0, P1, P2 for the number of electrons on the

island to be 0, 1, or 2 respectively. The desired probability, P1, goes to

approximately 1 for all conditions. The probabilities for an undesired

error, P0 and P2, rapidly decrease in value over the same voltage range

(approximately 0.001 to 0.003 V) for which the undesired rate, Γ10, falls

rapidly in Fig. 4. For a relatively slow ramp time of 100 ns, both unde-

sired probabilities fall below our criterion. However, for a faster ramp

time of 10 ns, the probability of having an error with zero electrons on
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the island after the barrier is raised saturates at a substantially larger

value than our desired error rate. This is an example of the dynamical

error, because the barrier has been raised so quickly that the wrong

number of electrons is ”locked into” the island.

Lower: Here we plot the two probabilities for undesired outcomes, mul-

tiplied by the rates as indicated. For the three cases where the unde-

sired probabilities fall to an acceptably low level, the ratios saturate at

1.0. However, for the ramp time of 10 ns, the ratio does not reach 1.0;

this indicates the basic cause for this ”locking in”: P0 cannot follow

the decrease in Γ10 quickly enough.

Parameters: same as the previous Fig., with |VG ramp| = 0.2 V.

7. Probabilities as a function of time, for a gate voltage ramp with a

waiting time. This shows the effect of an optimized ramp. Parameters

are the same as in the previous two Figures, with the gate voltage

ramps as indicated. In all cases, the ramp rate dVG/dt is the same as

in the 10 ns curves of the previous Fig. Note that in the previous Fig.,

this ramp time without a waiting time resulted in a “locking in” of the

wrong number of electrons.

Upper: Three representative possible gate voltage ramps. The differ-

ence between them is the waiting time t∗ and waiting gate voltage VG
∗.

The optimum case (red) has a very short waiting time (0.1 ns), the

other two have a longer time (1 ns).

Lower: Probability P0 of an error. The optimum case, which stops

45



at VG
∗ = 0.0025 V, reaches an acceptable dynamical error probability

in a very short time; as noted in the text, this is the value where the

Coulomb blockade becomes fully active. The other two cases show non-

optimum possibilities. The black curve shows the effect of stopping too

soon: the error rate Γ10
tot is still too large, and so P0 does not fall. The

blue curve, on the other hand, has a value of VG
∗ which is too large: at

this point, the value of Γ01
tot is too small to drive P0 down to the desired

level in 1 ns.
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